Botteau Wrap-up

How Far did your Autonomous Boat Sail?


Our goal was to build a boat that could autonomously sail itself from Lynchburg to Richmond along the James River. That’s roughly 150 miles of winding river fraught with narrow passes, dams, jagged rocks, loose branches, and bridge pillars among many other obstacles. And after roughly 70 hours of work spread over 5 months, our boat (Botteau), on it’s longest attempt, made it 300 yards down river. Needless to say we came up short. Really short. Here’s why, and what we learned from our experience.

Boats are simple. They’re just objects that weigh less than the water they displace. It’s factually true, but it turns out that like most things, the details of implementation are much more complex. And while our initial ideas weren’t quite this naive, there were a number of boat building details we underestimated.


The first was size constraint. Our primary consideration when sizing the boat was buoyancy. We weighed all of the components that needed to ride in the boat, determined the depth of draft we wanted the boat to have, then calculated the volume of water our boat profile needed to displace. Thanks to Archimedes, we were incredibly close with this calculation, ending up with a draft depth within half of an inch of our target. What we failed to consider; however, was the practical challenge of fitting two motors, 35 pounds of wheelchair batteries, and a computer accompanied by various electronic components inside the boat. Once everything went it, it was impossible to access the motors, and the batteries never came back out. So when the connections between our batteries came loose, we never knew it, and when we burned out three different motors, we had to cut through our fiberglass hull in order to replace them. It wasn’t the failures that caught us off guard, just the amount of time necessary to fix them.


The second major design flaw was the location of the fins and the instability that resulted. Fish have fins on the rear, and so do most boats. So why would we deviate from what works? When a boat propels itself through water, the water drags on the surface of the boat, producing a force that pulls toward the rear of the boat agaist the thrust force that pushes forward. As long as these two forces don't oppose one another around the boat’s moment of inertia (the point about which it spins), the boat remains stable. And this is how most boats function. The problem was that our boat was designed for energy efficiency. Even with 40 amp hours of battery life and a 100 watt solar panel, we knew that our batteries would risk being completely drained every day, so we decided to use as little energy as possible, so when the boat wasn’t at risk of crashing into an obstacle, we decided we’d cut power to the motors and let the river carry our vessel. The problem comes when the water starts moving faster than the boat, causing the drag force to change direction, making the configuration unstable, sending the boat into a spin from which it struggled to regain control.


Then came electronics. And in this realm it wasn’t so much the computation that set us back, but the basic electrical components that served as the boat’s drive train. These were the batteries, voltage regulators, computer, and motors. And among these four major components, one way or another, we destroyed them all. The batteries were damaged by leaking water and short circuits, the computer was destroyed by connecting the batteries backwards, the voltage regulators and motors fried and melted their wires by drawing more power than we expected, in their tight, enclosed, very warm space. When your most expensive budget item is destroyed beyond repair before the boat ever touches water, it’s tough to start over again. But we did. We migrated everything not just to a new computer, but to a completely different architecture (Jetson to Raspberry Pi), requiring that we rewrite our code with completely different libraries for GPS navigation, LIDAR range finding, motor and servo control, wifi communication, temperature monitoring, and camera operation (along with the need for interfacing with a new physical camera).


Our focus was on computation. It was the aspect that made this project unique and innovative. We thought it would be the greatest source of difficulty, but it turned out that we were wrong. It was the more fundamental aspects, well understood by boat builders and electrical engineers, that challenged us the most. Although that’s not to say that the code was easy. Teaching a computer to differentiate water from land is no easy task, and frankly, our 8th grade student’s implementation was impressive. The image on the right shows how it worked. The top image was the original taken by the camera on top of our boat, just below is the filter applied by the computer, and on the top left is the resulting instruction for which direction to turn the boat, along with confidence values that the left, center, and right sections of the image contain an obstacle (lower numbers are more likely to be obstacles).


So after months of work and repeated setbacks, we found ourselves at our favorite boat ramp, an all too familiar meeting spot, ready to deploy our boat on another test voyage. Except we noticed that the weather had changed. We had gotten used to the hundred degree temperatures on all those summer days at the river, and now here we were in October, no other kayakers in sight, and none of us thrilled at the idea of getting in the water. So despite knowing we weren’t ready, we agreed to make it our last attempt, cut the tether and let our boat go. And off it went, like sending your child to his first day of kindergarten, it took off, and there we were proud and excited. It didn’t even look back, it just sailed as it was born to do. And just when we thought it might really work, the boat suddenly lost its heading, the nose pointed toward the shore, and it slowly drifted aimlessly until finally being grounded among sticks and mud. Determined to figure out what went wrong, I took to the water, more treading mud than swimming, until I was finally able to reach the boat and tow it back to the ramp. We took it back to Vector Space for diagnosis and found that the computer had simply crashed, a regular run of the mill kernel panic, and one that we had seen multiple times before. And though we had more than one idea on how to prevent it from happening again, realizing that the show can go on forever, we decided it was time to accept defeat, and honorably retired Botteau to the ceiling of Vector Space, where it hangs today.


We often caution students at Vector Space that failure is an option. This isn’t an indication of inability or a suggestion to shy away from challenge, it’s a reminder that interesting and ambitious things are not easily accomplished, by anyone. Simply showing up and putting in the hours might be a winning recipe for completing worksheets or finishing chores, but it’s no guarantee that your boat will sail or that your rover will land safely on Mars. For many, it’s an idea that’s difficult to accept. Few of us were raised to deal with failure, myself included. But why not? What’s the alternative? To not even try? To only take on the things we can knowingly succeed in? Ask these students if they would have rather spent their time in any other way and I think you’ll find a common theme throughout their responses. Regardless of how far their boat sailed, they accomplished things they never imagined they could, made friendships and memories that will last a lifetime, and experienced an adventure unlike any other.


The Autonomous Boat Project was sponsored by Cognizant’s Making the Future Grant.


Tormach CNC Mill

We have a new toy! Thanks to a generous contribution from the Al Stroobants Foundation, Vector Space is the proud new home of a Tormach PCNC 440 desktop mill. Make: boasts that the Tormach "cuts metal like butter," and we're eager to try it out.

How it works

So what is a CNC mill? We have a manual Bridgeport mill at the space, which isn't going anywhere, and this is a computer controlled version of the same type of machine. A mill is used to take a piece of [usually metal] stock and cut away at it to create what you need. Known as subtractive manufacturing, you start with more material than you need and carve away at it- usually with fine detail and precision- until you have a functional metal part. A mill looks a lot like a drill press, the difference being the three-axis bed that moves around so that you can do more than just cut holes. 

For the Tormach, designs are created using 3D CAD/CAM software like Fusion 360, which are then sent to the mill for cutting. For technical specs on the PCNC 440, check out this page:


What are we going to make with this beauty? Parts for auto and hobby, engraving or customizing glass and metal items, jewelry, art, and of course: combat robots. In the Fall Vector Space will offer a chance for teens to try out the CNC mill as they make their own three-pound robot, complete with weapon and ready for battle at the next Hill City Robot Combat event.

Stop by soon or activate your membership now to learn about and utilize this powerful new machine!

Giving Tuesday Matching Challenge

We need your help!

Watts Petroleum has generously offered a $2,000 matching donation this giving season. From now through the end of the year, your gift will be doubled! We need individual donations of every shape and size to meet our goal. Thank you for supporting maker education here in Lynchburg!

Tips for making the most of your donation:

  1. Facebook donations made on Giving Tuesday will be matched by PayPal. This means your donation could count 3x!
  2. If you're shopping online this holiday season, be sure to use Amazon Smile and select Vector Space as your charity of choice.
  3. Is your Thanksgiving turkey coming from Kroger? A portion of each purchase can be donated through their Community Rewards program.
  4. Spread the word! Get your friends and family excited about giving. Here's a quick link for sharing:
  5. Thank our sponsors. Let Watts and other sponsors know how much their support of Vector Space means to you!

>> Click here to make a donation

Holiday Gift Workshop Series

Think back to your most treasured holiday gifts over the years. There is a good chance someone meaningful made those gifts, didn't they? Spread the joy of DIY and make the holidays even more meaningful this year with our Holiday Gift Workshop Series. We provide all the materials, teach you the necessary skills, and you create a handmade gift for a loved one. We have several options in different medium and different price points. Some are a great opportunity for kids to get in on the gift-giving, too!

Holiday Gift Series: Knit Headbands
Saturday, Dec 1 2018, 01:00 pm
Learn to sew with knit fabrics and make two stretchy headbands.

Holiday Gift Series: Stocking Hooks
Sunday, Dec 2 2018, 12:00 pm
An introduction to blacksmith techniques to make stocking hooks.

Holiday Gift Series: Laser Stamped Cards
Sunday, Dec 2 2018, 01:00 pm
Learn to use the laser cutter and make hand-stamped holiday cards.

Holiday Gift Series: 3D Printed Ornaments
Saturday, Dec 8 2018, 02:00 pm
Learn the basics of 3D printing and print a holiday ornament.

Holiday Gift Series: Wooden Salad Bowl
Sunday, Dec 9 2018, 01:00 pm
Learn to turn a keepsake salad bowl with custom engraving.

Holiday Gift Series: Soft Circuits
Sunday, Dec 9 2018, 01:00 pm
Learn to hand-sew with conductive fabric to make blinking holiday ornaments.

All workshops at Vector Space are open to the public and do not require membership to attend. Many of our students come to learn how to make at Vector Space with no prior experience. Unless stated otherwise, workshops are recommended for adults and youth ages 12+. Workshops are short term and usually focus on a single skill. They're a great way to learn something new!

Fall Workshops Now Available

Summer is almost over, and that means workshops are back! School isn't the only place for learning- sign up for one of our workshops to learn something new AND have a great time. Workshops are open to teens and adults. 

Upcoming workshops include sewing, electronics, laser cutting, 3d printing, screen printing, and more! Click here for the full roster of workshops:

Do you have a group that wants to make something together? Contact us to book a private class! Great for groups of 5-12, available in various topics. We will work with your group to come up with a project idea that fits your needs and interests.

Fall Workshop Schedule:

Screen Printing

Wednesday, Aug 22 2018, 06:30 pm

Learn to screen print and make your own summer tank top!

Intro to Sewing & Embroidery

Sunday, Aug 26 2018, 01:00 pm

Sew and embroider a set of placemats.

Laser Cutting and Engraving

Saturday, Sep 8 2018, 01:00 pm

Learn to use one of the most beloved tools at Vector Space, the laser cutter.

Intro to Arduino Programming

Sunday, Sep 30 2018, 01:00 am

Learn to interpret and control motors, servos, and RC with the Arduino microcontroller

Intro to 3D Printing

Sunday, Oct 7 2018, 02:00 pm

An introduction to 3D CAD software and 3D printing.

Quilting for Kids

Saturday, Oct 13 2018, 09:00 am

Learn to quilt in this parent/child class!

Sewing Workshop: Halloween Bags

Sunday, Oct 14 2018, 01:00 pm

Learn to sew a spooky holiday treat bag!

Machine Shop Growth

This summer Vector Space received a generous grant of $9,500 from The Easley Foundation to fund the acquisition of new capital equipment for our machine shop. Our existing milling machine (a 3-axis Bridgeport) will stay, and we will add sheet metal tools, tube benders, a cold cut saw and a vertial bandsaw. We will also replace our existing lathe with a larger and more powerferul one. Our plans for expansion go beyond this grant, and will eventually include a CNC milling machine.

What will we do with these new tools?
In the last few months our community of makers at Vector Space and outside organizations have shown a need for training and access to machining equipment. Vector Space is the only publicly available machine shop in Central Virginia, and this expansion of our machining facilities will increase our capacity for teaching these valuable, sought-after skills. As an older workforce looks toward retirement, these fields are in need of skilled and experienced welders, machinists, and CNC operators. Our membership ranges from students and hobbyists to certified professionals, and each will have access to training and use of this equipment.


Subscribe to Blog